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Abstract

Eshelby has shown that a glide dislocation can move without radiation of energy at
���
2
p

of the shear wave speed. It is also known that the same velocity plays a special role in shear

crack propagation. This result has not received wide attention in the past due to lack of
experiments and numerical simulations of transonic defects. Recent experiments on
transonic shear fracture and molecular dynamics simulations of dislocation motion have

stimulated renewed interest in the behavior of cracks and dislocations beyond the subsonic
regime. We attempt to provide a uni®ed treatment of transonic cracks and dislocations by
elaborating on the fundamental result of Eshelby. We develop a uni®ed treatment of
radiation-free transonic motion of both cracks and dislocations. We use Stroh's method to

generalize the Eshelby theorem to orthotropic and anisotropic elastic solids. In the case of
orthotropic solids, we provide a proof of existence of the radiation-free speed. In the case
of general anisotropic solids, there are three wave speeds c3 < c2 < c1 in any given crystal

orientation at which a moving defect is considered. In the ®rst transonic regime c3< v< c2,
we show that there always exists a radiation-free state for any given velocity v of a moving
defect. In the second transonic regime c2 < v < c1, the existence of radiation-free states

appears to depend on both the symmetry properties of the material and the defect
orientation. Examples of existence in the second transonic regime include a crack
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propagating in an isotropic solid and a crack propagating along a plane of symmetry in an
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1. Introduction

The mechanics of dynamic fracture has been of signi®cant interest to the

understanding of dynamic failure of solids and earthquakes. Although subsonic
crack propagation has been thoroughly investigated by analytical, numerical and
experimental methods, there is relatively little study on transonic (intersonic) and
supersonic fracture (i.e., the crack tip velocity faster than the shear wave speed of

the solid). Analysis of seismic data taken during crustal earthquakes shows that
shear fracture on a pre-existing fault (weak plane) can propagate a velocity larger
than the shear wave speed of the crustal material (e.g., Archuleta, 1982). This has

led several researchers to investigate transonic crack growth in elastic
homogeneous and isotropic solids (e.g., Burridge, 1973; Burridge et al., 1979;
Freund, 1979, 1990; Slepyan, 1981; Simonov, 1983; Georgiadis, 1986; Broberg,

1989). It is established that there are two shock waves propagating with the crack
tip when the crack tip velocity exceeds the shear wave speed. Unlike subsonic
crack growth, stresses are singular not only at the crack tip, but also on shock
waves, which represent lines of strong discontinuity. Another unique feature of

transonic crack growth is that the crack tip singularity is not the square-root
singularity as in quasi-static or subsonic dynamic crack growth, but depends on
the crack tip velocity. In Mode I, both the power of the stress singularity and the

dynamic crack tip energy release rate vanish as soon as the crack velocity exceeds
the Rayleigh wave speed. In Mode II, the power of the stress singularity is always
less than 1/2 except at a single crack tip velocity of

���
2
p

cs, at which the classical
square-root singularity is preserved, where cs is the shear wave speed of the

material. However, there have not been any experiments that can validate the
attainment of this crack speed in elastic homogeneous and isotropic solids because
a crack always kinks or branches out, deviating from the initial crack plane and

having a zig-zag crack path, once the crack tip velocity exceeds only 0.3±0.4cs
(e.g., Freund, 1990; Gao, 1993). Therefore, a wavy crack instability or crack
branching always steps in before the crack tip velocity exceeds, cs. This has
prevented laboratory experiments from detecting transonic crack growth in elastic

homogeneous and isotropic solids. The only possibility of attaining transonic
conditions is to introduce a weak path (a layer of lower toughness) such that
crack growth is con®ned to this weak path so that crack branching is prevented

even in elastic isotropic materials.

To check this hypothesis, Rosakis et al. (1998) performed dynamic high-speed

photoelastic experiments on weakly bonded, identical Homalite-100 plates loaded
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in an asymmetric impact con®guration. They were able to show that under certain
combinations of impact velocity and bond strength, shear dominated transonic
cracks are generated and grow along the weak interface. The crack growth
velocities were found to vary transiently and to cover the entire transonic regime
attaining a maximum just short of the longitudinal wave speed cd of Homalite-100
(02100 m/s). The cracks were again accompanied by well-formed shear shock
waves emanating from the crack tip, characteristic of all intersonically growing
disturbances. This study clearly demonstrated that Mode-II crack growth is
possible even in bonded, identical isotropic solids as long as weak crack paths are
available, which are there to allow for Mode-II crack growth and to prevent crack
branching.

Recently, Coker and Rosakis (1998) and Liu et al. (1998) have studied the
various aspects of dynamic failure of unidirectional ®ber-reinforced Graphite/
Epoxy composite materials. On the macroscopic scale, which is much larger than
the ®ber diameter and ®ber spacing, the composite can be considered as an elastic
orthotropic solid. Its shear wave speed is 1920 m/s, while the longitudinal wave
speeds normal and parallel to the ®ber direction are 2800 m/s and 10,000 m/s,
respectively, under plane-stress deformation. It is observed that, even under
macroscopic mixed mode loading, a crack always propagated along the ®ber
direction. This is because the ®ber/matrix interfaces are much weaker than the
®bers in these composites such that the interfaces form weak crack paths for crack
propagation. In Mode-I dynamic fracture, the crack tip velocity never exceeded
the Rayleigh wave speed, i.e., transonic crack growth never occurred in Mode I,
regardless of the e�ort to increase the impact velocities of the projectile.
Furthermore, the measured dynamic crack tip energy release rate was found to
decrease monotonically with the crack tip velocity up to the Rayleigh wave speed.
In Mode II, however, the crack tip velocity not only exceeded the shear wave
speed of 1920 m/s, but also transiently approached a much higher speed of about
9000 m/s and ®nally settled to a steady state speed of about 8000 m/s and
remained at this speed for a substantial period of time in the experiment.

Motivated by these experimental studies, Huang et al. (1999) investigated the
asymptotic ®eld near a crack tip propagating intersonically in a homogeneous,
elastic orthotropic solid. The crack tip velocity is between the shear wave speed
and the higher longitudinal wave in the sti� (®ber) direction of the orthotropic
solid. In Mode II, the asymptotic analysis shows that there exists a single crack
tip velocity (higher than the shear wave speed) that gives a ®nite, non-vanishing
crack tip energy release rate. At all other intersonic crack tip velocities the
required crack tip energy release rate is zero. An expression of this critical velocity
is given analytically in terms of the mechanical properties of the orthotropic
composite. For the Graphite/Epoxy unidirectional ®ber-reinforced composites, the
predicted critical crack tip velocity agrees well with the stable crack tip velocity at
which the crack grew in a near steady state for a substantial period of time in
shear load dominated experiments (Coker and Rosakis, 1998). Therefore, based
on the requirement of a ®nite, non-vanishing crack tip energy release rate, Huang
et al. (1999) concluded that Mode-I intersonic crack propagation is impossible,
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and Mode-II intersonic crack growth tends to approach a stable crack tip velocity
which depends only on the material properties.

From the point of view that a steady state crack can be modeled as a
continuous array of Somigliana dislocations moving at the same speed, it is
curious to see if the behavior of a transonic crack can be linked to that of a
transonic dislocation. Eshelby (1949) has shown that there exists a critical velocity
equal to

���
2
p

cs at which the stress ®eld around a uniformly moving glide
dislocation is of purely subsonic form such that the dislocation moves without
radiation of energy. Weertman (1967, 1969) studied transonic motion of both
glide and climb dislocations and found that the Eshelby speed does not apply to a
moving climb dislocation. Payton (1989, 1995) studied transient and steady state
stresses around a transonic glide dislocation moving in a transversely isotropic
elastic solid and showed that the radiation disappears at a critical speed.
Molecular dynamics studies have shown that dislocations often propagate beyond
the subsonic regime. Hoover et al. (1977) applied non-equilibrium molecular
dynamics to the generation and steady propagation of edge dislocations and
reported both subsonic and transonic dislocation propagation. Zhang et al. (1995)
reported dislocation emission from a crack tip at both subsonic and transonic
speeds. Recent molecular dynamics simulations by Gumbsch and Gao (1999) have
shown that dislocations can move transonically and even supersonically (faster
than both shear and longitudinal wave speeds) if they are subjected to su�ciently
high shear stresses and if they are created as transonic dislocations by strong
stress concentration. In the case of transonic motion, Gumbsch and Gao observed
dislocation velocities around

���
2
p

cs. Abraham et al. (1994) have also observed
propagation of transonic dislocations from a crack tip 9 in 6±12 Lenard±Jones
solids.

Motivated by the experimental and numerical studies of transonic motion of
cracks and dislocations, an attempt is made in this paper to provide a uni®ed
treatment of radiation-free transonic cracks and dislocations. We develop a
mathematical framework in which the radiation-free cracks and dislocations can
be studied simultaneously for comparison. We show that radiation-free transonic
motion of a glide dislocation in an isotropic solid is indeed possible at

���
2
p

cs,
rederiving the Eshelby theorem, and that such a critical speed does not apply to a
climb dislocation, verifying the analysis of Weertman (1967). These results are
then linked to radiation-free motion of Mode II shear cracks at

���
2
p

cs, which
corresponds to a square-root singular crack tip stress ®eld (Freund, 1979;
Broberg, 1989). We use Stroh's method to generalize the Eshelby theorem to
orthotropic and anisotropic elastic solids. In the case of orthotropic solids, the
results agree with the analysis of asymptotic crack tip ®eld of Huang et al. (1999)
and agrees well with experimental observations of steady state transonic shear
fracture in ®ber-reinforced composites (Coker and Rosakis, 1998). We give a
proof of existence of the radiation-free speed in the orthotropic case. In the case
of general anisotropic solids, there are three wave speeds c3< c2< c1 in any given
crystal orientation at which a moving defect is considered. In the ®rst transonic
regime c3< v< c2, we show that there always exists a radiation-free state for any
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given velocity of the defect. In the second transonic regime c2<v<c1, the
existence of radiation-free states appears to depend on both the symmetry
properties of the material and the defect orientation. Examples of existence
include a crack propagating in an isotropic solid and a crack propagating along a
plane of symmetry in an orthotropic solid.

2. Transonic defects in isotropic solids

2.1. Supersonic radiation

It is known that supersonic motion of defects such as cracks and dislocations
involves shock fronts, or traveling velocity discontinuity surfaces. These shock
fronts transport energy away from the plane on which such defects move. The
conventional wisdom is that steady-state motion in the supersonic regime cannot
be maintained by externally applied loads. For dislocation motion, a possible way
of achieving supersonic motion is by transforming the slip plane to a state of
lower energy, as in the case of a partial dislocation removing a stacking fault
(Hirth and Lothe, 1982).

A uniformly moving crack can be considered as consisting of a continuous
array of dislocations moving at the same speed. The appearance of shock fronts at
cracks and dislocations can be understood by examining the simplest case of a
supersonic screw dislocation. In that case, the out-of-plane displacement satis®es
the wave equation

c2sr2u3 � �u3, �1�
where H2 is the Laplace operator, uÇ3 means derivative of u3 with respect to time,

cs �
����
m
r

r
�2�

is the shear wave speed, m and r being the shear modulus and material density,
respectively.

The solution to the above equation of motion for a screw dislocation moving at
a supersonic speed v>cs, is (Hirth and Lothe, 1982)

u3 � 1
2bH�cstÿ x1 cos aÿ x2 sin a�, x2 > 0

u3 � ÿ1
2bH�cstÿ x1 cos a� x2 sin a�, x2<0, �3�

where H( . . .) is the Heaviside step function (H(x )=0 when x < 0 and H(x )=1
when x>0) and the angle

cos a � cs=v �4�
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determines the orientation at which the two diverging shock fronts move and
carry energy away from the dislocation.

The above shock front solution characterizes the general feature of the
deformation ®eld of a dislocation or a crack (as an array of dislocations) in the
supersonic regime. In the case of plane strain or plane stress deformation, the
solution is usually more complicated due to the presence of an additional wave
speed, the longitudinal wave speed

cd �
���������������
l� 2m

r

s
, �5�

where l and m are LameÂ 's constants. The longitudinal wave speed is roughly
���
3
p

times the shear wave speed cs when the Poisson ratio is around 0.25. Three
velocity regimes could be identi®ed, with subsonic regime de®ned in the velocity
range 0< v< cs, intersonic or transonic in the range cs < v< cd, and supersonic
in the range v>cd. The transonic regime cs < v< cd is of special interest because
there is a supersonic component of the solution with respect to the shear wave
and a subsonic component with respect to the longitudinal wave. A transonic
defect moves with shock fronts characterized by the shear wave speed and is also
subjected to a subsonic stress ®eld characterized by the longitudinal wave speed.

2.2. The mathematical solution of a radiation-free transonic defect

In two-dimensional elastodynamics, the in-plane displacements are often
represented in terms of two potential functions f and c as

u1 � f,1 � c,2, u2 � f,2 ÿ c,1, �6�
where comma indicates di�erentiation (e.g., f,1=@f/@x1). Combining these
equations with equilibrium equations indicates

c2dr2f � �f , c2sr2c � �c : �7�
Therefore, the potential f represents the part of the displacement ®eld associated
with the longitudinal wave and c represents that associated with the shear wave.
In the transonic velocity regime, f remains subsonic while c takes the form of
shock front solutions similar to (3).

We are interested in the question whether there exists a radiation-free, purely
subsonic solution for a crack or a dislocation moving in the transonic velocity
regime. One approach to this question is to derive the full solution of a moving
defect and examine the conditions under which the supersonic components vanish.
An alternative approach is to probe the existence of a purely subsonic solution in
the transonic regime. The equivalence of the two approaches are guaranteed by
the uniqueness theorem of elasticity. The latter approach is more convenient for
our present purpose and will be adopted here.

We seek purely subsonic solutions for a defect moving at a speed in the

H. Gao et al. / Journal of the Mechanics and Physics of Solids 47 (1999) 1941±19611946



transonic regime cs<v<cd. This class of solutions exists only if the supersonic
component c exactly vanish, in which case the displacement ®eld becomes
irrotational,

uk � f,k: �8�

Each component of the displacement vector independently satis®es the wave
equation

c2dr2uk � �uk, �9�

which under the steady-state condition can be rewritten as

a2duk,11 � uk,22 � 0, �10�

where

a2d � 1ÿ v2

c2d
: �11�

The general form for a possible solution is

ui � Re �Aif�x1 ÿ vt� iadx2��, �12�

where Re stands for the real part of a complex variable, and Ai are two arbitrary
complex constants that are linked by the relation

A2 � iadA1 �13�

due to the irrotationality of displacements. Here we have taken f�z� � �f�z�, which
is a valid assumption for crack and dislocation problems to be considered in this
paper.

The stress ®eld associated with the radiation-free transonic defect is

s11 � r�c2dr2fÿ 2c2sf,22� � r�v2f,11 ÿ 2c2sf,22�

s22 � r�c2dr2fÿ 2c2sf,11� � r�v2 ÿ 2c2s �f,11

s12 � 2rc2sf,12: �14�

A quantity that will be convenient for our subsequent discussions on transonic
dislocations is the resultant body force on the material within a closed contour
surrounding the dislocation. Following Stroh (1962), let c be such a closed
contour surrounding the dislocation and moving with it without change of shape.
The stresses contribute a resultant force on the material inside c of
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F 0i �
I
c

sijnj ds, �15�

where nj is the unit normal to c. The rate at which momentum ¯ows into c is

F0i �
I
c

r _uivn1 ds: �16�

In a steady state, the net change of linear and angular momentum inside c must
be zero. Conservation of linear momentum indicates that the resultant body force
Fi is

Fi � ÿF 0i ÿ F0i: �17�

Substituting (14) and (8) into (15)±(17) yields the resultant forces

F1 � 2rc2s

�
C

@f,2

@s
ds � 2rc2s (f,2),

F2 � r�v2 ÿ 2c2s �
�
C

@f,1

@s
ds � r�v2 ÿ 2c2s �(f,1): �18�

The notation ( . . .) is used to denote the jump in a multivalued function along the
closed contour c.

2.3. The radiation-free transonic crack

Previous studies on transonic fracture (Freund, 1979; Broberg, 1989) in
isotropic solids have emphasized on the asymptotic nature of the crack tip ®eld.
Here we will examine the transonic crack from a slightly di�erent perspective by
seeking solutions of a purely subsonic nature in the transonic regime. This will
allow us to form a uni®ed view on the radiation-free motion of both cracks and
dislocations.

We seek purely subsonic solutions for a crack moving at a speed in the
transonic regime cs < v< cd. Following the framework of Section 2.2, a possible
solution is

ui � Re

h
Ai

��������������������������������
x1 ÿ vt� iadx2

p i
, �19�

where Ai are complex constants linked by (13). The stresses can be derived from
the displacements by (14) as

s11 � r�v2u1,1 ÿ 2c2su2,2�,

s22 � r�v2 ÿ 2c2s �u1,1,
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s12 � 2rc2su2,1: �20�

Obviously, there exists no solution for a radiation-free Mode I crack in cs<v<cd,
which can be seen from the fact that both A1 and A2 have to vanish in order to
satisfy the symmetry condition s12=0 on the crack plane.

In the case of a Mode II crack, the symmetry condition s22=0 along the crack
plane is satis®ed at the critical speed vrf �

���
2
p

cs. The traction-free condition along
the crack face is satis®ed if we choose the complex constants A1 and A2 as

A2 � K

rc2s
������
2p
p , A1 � K

irc2sad

������
2p
p , �21�

where K is the stress intensity factor de®ned such that the shear stress ahead of
the crack tip is

s12 � K�����������������������
2p�x1 ÿ vt�p : �22�

Correspondingly, the relative crack surface displacements are

Du1 � 2K

rc2sad

������
2p
p ���������������

vtÿ x1

p
, Du2 � 0: �23�

The usual crack closure integral leads to the relationship between the energy
release rate G and stress intensity factor K as

G � K 2

4rc2sad

� bK 2

E
, �24�

where

b � 1� n
2

������������
1ÿ n

n

r
, �25�

which is around 1.08 when n=0.25.
The above results indicate that radiating shock fronts disappear when a crack

under Mode II loading moves exactly at the speed
���
2
p

cs. The implication is that a
Mode II crack can achieve a steady state motion at

���
2
p

cs. From the path-
independent property of the J-integral, a radiation-free crack must have an
inverse-square-root singularity, which con®rms previous asymptotic analysis of
transonic cracks (e.g., Freund, 1979; Broberg, 1989).

2.4. The radiation-free transonic dislocation

Rapid propagation of dislocations beyond subsonic regime has also been
investigated in the past (Weertman, 1967, 1969; Hirth and Lothe, 1982). Eshelby
(1949) ®rst noted that the character of a transonic gliding edge dislocation
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becomes purely subsonic at a particular speed
���
2
p

cs. In other words, the radiating
shock fronts disappear when a gliding edge dislocation moves exactly at the speed���
2
p

cs. If a Mode II shear crack is considered as a continuous array of gliding edge
dislocations, the Eshelby result implies that a Mode II shear crack propagating at���
2
p

cs is free of radiation and must have the inverse-square-root singularity. A
uni®ed view of transonic defects is that the critical speed

���
2
p

cs represents an
isolated radiation-free state within the transonic velocity regime.

The radiation-free dislocation problem could be analyzed in the same manner as
the radiation-free crack. Let us seek purely subsonic solutions for an edge
dislocation moving at a transonic speed cs<v<cd. In order to see the
mathematical connection with the transonic crack analysis, we shall not impose
the restriction that the dislocation be of glide type, as in the analysis of Eshelby
(1949). Rather we consider an arbitrary Burgers vector even though it may be
physically impossible for a climb type edge dislocation to propagate near elastic
wave speeds. The general form of the dislocation solution we seek is

ui � Re�Ai ln�x1 ÿ vt� iadx2�� �26�
where the complex constants Ai are related to each other by (13).

For a uniformly moving dislocation, there exist no resultant forces on the
material inside a closed contour c surrounding the dislocation. For the dislocation
problem, we note that (f,1) and (f,2) de®ne the components of Burgers vector,

(f,1) � b1, (f,2) � b2: �27�

From (18), for non-trivial solutions, the zero resultant force condition gives

(f,2) � b2 � 0, v �
���
2
p

cs: �28�

Thus the only non-trivial solution for a radiation-free transonic dislocation is a
glide edge dislocation with b1$0 moving at

���
2
p

cs. A transonic Mode I crack can
be represented as an array of climb-type edge dislocations, hence no radiation-free
state can be found. On the other hand, a steady state transonic Mode II shear
crack can be represented as an array of gliding edge dislocations moving at the
same speed. This perspective provides a uni®ed view of radiation-free transonic
motion of cracks and dislocations.

The radiation-free solution of a transonic glide edge dislocation is simply given
by (26) with

A1 � b1
2pi

, A2 � adb1
2p

: �29�

3. Transonic defects in anisotropic solids

The discussions in Section 2 on radiation-free transonic cracks and dislocations
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in the isotropic elastic solid can be generalized to anisotropic elastic solids where
there exist in general three di�erent bulk wave speeds c3 R c2 R c1 in any given
crystal orientation at which a moving defect is considered (Stroh, 1962). When
these wave speeds are distinct, there are four di�erent velocity regimes: subsonic
regime with the speed of the defect in the velocity range 0< v< c3, ®rst transonic
regime with c3< v< c2, second transonic regime with c2< v< c1, and supersonic
regime with v>c1. While subsonic dislocations have been discussed by Stroh
(1962), and the general features of transonic and supersonic dislocations are
reasonably well understood, possible existence of radiation-free transonic
dislocations has not been investigated previously.

3.1. Stroh's method

We will follow the method developed by Stroh (1962) for steady state
dislocation motion in an anisotropic elastic solid. For steady state motion

ui � ui�x1 ÿ vt,x2�, sij � sij�x1 ÿ vt,x2�, �30�

the displacement solutions can be written in the form

ui � Re�Aif �x1 ÿ vt� px2��, �31�

where Ai is the eigenvector, and the constant p is the Stroh eigenvalue which is
determined as follows. Substituting (31) into the Navier equation of motion

Cijkl @
2uk=@xj @xl � r @2ui=@ t2, �32�

where Cijkl is the elastic modulus tensor, we arrive at the algebraic equation
(Stroh, 1962; Eshelby et al., 1953)

�Ci1k1 ÿ rv2dik � pCi1k2 � pCi2k1 � p2Ci2k2�Ak � 0: �33�

For a non-trivial solution of Ak, the determinant of the coe�cient matrix must
vanish

kCi1k1 ÿ rv2dik � pCi1k2 � pCi2k1 � p2Ci2k2k � 0: �34�

This sextic equation produces six eigenvalues. In the subsonic regime v < c3, all
the eigenvalues are complex and form three complex conjugate pairs. In the ®rst
transonic regime c3<v<c2, two of the eigenvalues become real and generate a
pair of diverging shock fronts at a moving defect. In the second transonic regime
c2<v<c1, four of the eigenvalues become real and generate two pairs of
diverging shock fronts at the defect. In the supersonic regime v>c1, all
eigenvalues are real and there is no longer a subsonic component to the solution.
Following Stroh (1962), we order and label the eigenvalues p2a (a=1, 2, 3) such
that p2a becomes real when vrca. We further order the eigenvalues in such a way
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that, if complex valued, pa has positive imaginary part while pÿa has negative
imaginary part.

The stresses are represented in terms of three stress functions

fi � Re
�
Lif�x1 ÿ vt� px2�

� �35�

(i=1, 2, 3) as

si1 � ÿfi,2 ÿ r _uiv, si2 � fi,1: �36�

After the displacement eigenvector Ak is found, Hooke's law relates the stress
eigenvector Li to Ak as

Li � �Ci2k1 � pCi2k2�Ak: �37�

Similar to the calculations shown in Section 2, the resultant forces on the material
inside a closed contour c can be calculated. The result is (Stroh, 1962)

Fi � (fi): �38�

3.2. Transonic cracks in orthotropic solids

Motivated by recent experiments (Coker and Rosakis, 1998; Liu et al., 1999)
and theory (Huang et al., 1999) on dynamic crack propagation in ®ber reinforced
composites with orthotropic symmetry, we ®rst study a transonic crack
propagating along a symmetry plane (the x1-direction) of an orthotropic solid. In
this case, the in-plane and out-of-plane deformation decouple from each other.
The Stroh eigenvalues governing the in-plane deformation are determined from����C11 ÿ rv2 � p2C66 p�C12 � C66�

p�C12 � C66� C66 ÿ rv2 � p2C22

���� � 0, �39�

where, following the convention, the fourth-order elastic moduli Cijkl is condensed
to a 6 � 6 matrix Cpq following the subscript conversion rule (11)4 1, (22)4 2,
(33)4 3, (23 or 32)4 4, (13 or 31)4 5, (12 or 21)4 6 (e.g., C1121=C16). The two
wave speeds in the direction of x1 associated with in-plane deformation are

c1 �
���������
C11

r

s
, c2 �

���������
C66

r

s
: �40�

In the transonic regime, the solution to (39) is

p21 �2ib1, p22 �2b2 �41�

where b1 and b2 are real and positive constants given by (Huang et al., 1999)
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b1 �
��������������������������������������������������������
B2 � 4AC
p � B

2A

s
, b2 �

��������������������������������������������������������
B2 � 4AC
p ÿ B

2A

s

A � C22C66

B � C11C22 ÿ �C22 � C66�rv2 ÿ C 2
12 ÿ 2C12C66

C � �C11 ÿ rv2��rv2 ÿ C66�: �42�
We seek radiation-free solutions of a purely subsonic nature. By the path-
independence property of the J-integral, such solutions, if they exist, must have an
inverse-square-root singularity near the crack tip. We thus write

ui � Re
�
Ai

������������������������������
x1 ÿ vt� p1x2

p �
fi � Re

�
Li

������������������������������
x1 ÿ vt� p1x2

p � �43�
where the eigenvector Ai associated with the eigenvalue p1 is determined from

�C11 ÿ rv2 � p21C66�A1 � p1�C12 � C66�A2 � 0

p1�C12 � C66�A1 � �C66 ÿ rv2 � p21C22�A2 � 0 �44�
to an arbitrary complex constant. Hooke's law, Eq. (37), becomes in the present
case,

L1 � p1C66A1 � C66A2, L2 � C12A1 � p1C22A2: �45�
The two equations above can be combined to give a useful relation

L1 � L2p1 � rv2A2: �46�
For a Mode I crack, symmetry requires that s12 vanish along the entire plane of
the crack. This leads to

L1 � 0: �47�
The traction-free condition on the crack surface requires s22=0 there, which gives

Re�iL2� � 0, �48�
indicating that L2 must be real. Combining (45) and (47), we obtain

A2 � ÿp1A1 �49�
for Mode I. The second equation of the eigenvalue problem (44) then gives
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�C22p
2
1 ÿ C12 ÿ rv2�A2 � 0: �50�

The coe�cient of A2 in the above parentheses is always negative in the entire
transonic regime since p 2

1=ÿb 2
1< 0. The only solution is A2=0, as well as A1=0

from (49). Therefore, there is no radiation-free state of a transonic crack under
Mode I conditions.

For a Mode II crack, symmetry requires that s22 vanishes along the entire plane
of the crack. This leads to

L2 � 0: �51�
The traction-free condition on the crack surface requires s12=0 there,
corresponding to

Re�iL1� � 0, �52�
i.e., L1 must be real. Inserting (51) into (45) leads to

A1 � ÿp1C22

C12
A2 �53�

for Mode II. The second equation of the eigenvalue problem (44) then gives

fII�v�A2 � 0, �54�
where

fII�v� � p21C22C66 ÿ C12�C66 ÿ rv2�: �55�
To have a non-trivial solution for A2, as well as for A1 in (53), the coe�cient fII
must vanish. Therefore, the critical condition for a radiation-free Mode II crack is
thus

fII�v� � ÿb21C22C66 ÿ C12�C66 ÿ rv2� � 0: �56�
In contrast to the Mode I case, there always exists a solution for v within the
transonic regime c2< v< c1 for a Mode II crack because

fII�c1� � C12r�c21 ÿ c22� > 0, fII�c2� � ÿb21C22C66<0: �57�
Solving Eq. (56) with (42) gives the radiation-free speed

vrf �
�����������������������������
C11C22 ÿ C 2

12

r�C12 � C22�

s
: �58�

This speed was ®rst obtained by Huang et al. (1999) who studied the critical speed
at which the singularity near the tip of a transonic crack becomes ÿ1/2. For the
Graphite/Epoxy unidirection ®ber-reinforced composite, the calculated radiation-
free speed is about vrf=4.532c2=8700 m/s, which is compared to the
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experimentally observed stable crack tip velocity of approximately 8000 m/s. The
di�erence can be attributed to the uncertainties in elastic constants of these
composites and possibly also to non-linear interaction between the shock
generation and the fracture process near the crack tip.

The above analysis indicates that a radiation-free transonic crack in orthotropic
solids must be Mode II, similar to the isotropic case. De®ning the stress intensity
factor K such that the shear stress ahead of the crack tip is

s12 � K�����������������������
2p�x1 ÿ vt�p : �59�

It follows that for the present case,

L1 � 2K������
2p
p , A1 � ÿ 2p1C22K

rv2C12

������
2p
p , A2 � 2K

rv2
������
2p
p : �60�

The relative crack surface displacements are

Du1 � 4b1C22K

rv2rfC12

������
2p
p ���������������

vtÿ x1

p
, Du2 � 0: �61�

The usual crack closure integral leads to the energy release rate

G � b1C22K
2

2rv2rfC12

: �62�

3.3. Transonic dislocations in orthotropic solids

We now show that the radiation-free speed of a transonic dislocation
propagating along a symmetry plane of an orthotropic solid is identical to that of
a crack.

We seek possible radiation-free solutions of a transonic dislocation of Burgers
vector bi (i=1, 2) and write

ui � Re�Ai ln�x1 ÿ vt� p1x2��,

fi � Re�Li ln�x1 ÿ vt� p1x2��, �63�
where Ai is related to the Burgers vector bi by

bi � Re�2piAi �: �64�
There are no resultant forces on the material inside a closed contour around the
dislocation. Inserting (63) into (38) leads to

Re�iLk� � 0: �65�
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For a climb edge dislocation (i.e., b1=0), the shear stress s12 vanishes along the
plane of motion due to symmetry, which when combined with (65) requires

L1 � 0, Re�iL2� � 0: �66�
These are identical to the conditions given in (47) and (48) on the eigenvector Li

for the radiation-free Mode I crack. Following the same analysis given in (49) and
(50) leads to the conclusion that there is no radiation-free state of a transonic
climb edge dislocation.

For a glide edge dislocation (i.e., b2=0), the normal stress s22 vanishes along
the plane of motion due to symmetry, which when combined with (65) requires

L2 � 0, Re�iL1� � 0: �67�
These are identical to the conditions given in (51) and (52) on the eigenvector Li

for the radiation-free Mode II crack. Therefore, following the same steps from
(53)±(58) yields a radiation-free speed of a transonic dislocation identical to that
of a transonic crack given in (58).

As has been discussed in the isotropic case, the connection between a climb
edge dislocation and a Mode I crack, and that between a glide edge dislocation
and a Mode II shear crack are not surprising because the crack can be modeled as
a continuous array of dislocations moving at the same speed.

3.4. Radiation-free defects in general anisotropic solids

We now attempt to generalize the analysis of radiation-free transonic defects to
the case of general anisotropic solids where there exist in general three di�erent
bulk wave speeds c3<c2<c1 in any given crystal orientation at which a moving
defect is considered (Stroh, 1962). We consider separately the case of ®rst
transonic regime c3<v<c2 and second transonic regime c2<v<c1. We will discuss
a radiation-free transonic dislocation and a radiation-free transonic crack in the
same setting.

In the ®rst transonic regime, the eigenvalues p23 are real while p21 and
p22 are complex valued. We seek purely subsonic solutions where the supersonic
component relating to p23 vanish. In that case, the displacement ®eld and
the stress functions for a radiation-free transonic dislocation are written in the
form,

uk � Re�Ak1 ln�z1� � Ak2 ln�z2��, fk � Re�Lk1 ln�z1� � Lk2 ln�z2��, �68�
where za=x1ÿvt+pax2. Similarly, the corresponding ®elds for a radiation-free
transonic crack are

uk � Re
�
Ak1

�����
z1
p � Ak2

�����
z2
p �

, fk � Re
�
Lk1

�����
z1
p � Lk2

�����
z2
p �

: �69�

We do not normalize the eigenvectors so that arbitrary constant coe�cients are
not necessary in the above superposition.
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Requiring that the tractions on the upper and lower surfaces of a crack vanish
or that the resultant forces on the material inside a closed contour around a
dislocation vanish, we obtain

Re�i�Lk1 � Lk2�� � 0: �70�
These are three conditions for k=1, 2, 3.

According to (33), the two displacement eigenvectors Aka (a=1, 2) are
determined from the algebraic equation

�Ci1k1 ÿ rv2dik � paCi1k2 � paCi2k1 � p2aCi2k2�Aka � 0 �71�
to two arbitrary complex constants, one for Ak1 and one for Ak2. According to
(37), the two stress eigenvectors Lka are related to Aka by

Lia � �Ci2k1 � paCi2k2�Aka: �72�
Therefore, the mathematical problem of the existence of radiation-free states in
the ®rst transonic regime is reduced to having four unknown real constants (two
complex constants in the two displacement eigenvectors) satisfy three real
equations given in (70). Since this could be posed as a 4�4 homogeneous
algebraic equation problem with one null equation, the determinant of the
coe�cient matrix is always zero and a non-trivial solution can always be found
for any given velocity of a moving defect. Therefore, we have arrived at the
following theorem for radiation-free transonic defects:

Theorem. At any given velocity in the ®rst transonic regime, there always exists a
radiation-free transonic state of a moving defect in an anisotropic solid.

In the relatively familiar subsonic regime, a crack moves without radiation with
arbitrary mixity of fracture Modes I, II and III; a dislocation moves without
radiation with arbitrary Burgers vector. In the ®rst transonic regime, although it is
always possible to ®nd a radiation-free state, the mode mixity of a crack or the
Burgers vector of a dislocation is constrained. This can be seen from the fact that
there are three constraint equations in (70) on four degrees of freedom from the
displacement eigenvectors. Consider a trivial example of an orthotropic solid
where there are two wave speeds associated with in-plane deformation and one
wave speed associated with out-of-plane deformation. Without loss of generality,
we label the in-plane wave speeds as c2 and c1, with c2< c1, and the out-of-plane
wave speed c3. If c3< c2, the ®rst transonic regime c3< v< c2 corresponds to the
subsonic motion for the in-plane deformation so that a mixed Mode I/II crack or
a mixed glide/climb edge dislocation moves without radiation. If c2 < c3, the ®rst
transonic regime c2 < v< c3 changes to the subsonic motion for the out-of-plane
deformation so that a Mode III crack or a screw dislocation moves without
radiation. From this example, we see that the fracture mode or the Burgers vector
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cannot be arbitrarily chosen for the radiation-free state in the ®rst transonic
regime.

For the second transonic regime, two pairs of eigenvalues p22 and p23 are real
while p21 are complex valued. We seek subsonic solutions by writing the
displacement ®eld and the stress functions for a radiation-free transonic
dislocation in the form,

uk � Re�Ak ln�z1��, fk � Re�Lk ln�z1��: �73�

Similarly, the corresponding ®elds for a radiation-free transonic crack are

uk � Re
�
Ak

�����
z1
p �

, fk � Re
��Lk

�����
z1
p �

: �74�

The condition of no crack face traction or no spurious forces on a dislocation
requires

Re�iLk� � 0, �75�

which gives three real equations for k=1, 2, 3. According to (33), the
displacement eigenvector Ak is determined from the algebraic equation

�Ci1k1 ÿ rv2dik � p1Ci1k2 � p1Ci2k1 � p21Ci2k2�Ak � 0 �76�

to an arbitrary complex constant. According to (37), the stress eigenvector Lk is
related to Ak by

Li � �Ci2k1 � p1Ci2k2�Ak: �77�

Therefore, the mathematical problem of the existence of radiation-free states in
the second transonic regime is reduced to having two unknown real constants (one
complex constant in the displacement eigenvector) satisfy three real equations
given in (75). In this case, a non-trivial solution cannot be guaranteed unless
signi®cant symmetry conditions exist. For example, as soon as the in-plane
deformation is decoupled from the out-of-plane deformation, the existence of
radiation-free states in the second transonic regime could be posed as a
homogeneous algebraic problem of ®nding two unknown real constants in the
displacement eigenvector which satisfy two real equations given in (75) for k=1,
2. A radiation-free speed can then be determined by requiring that the
determinant of the coe�cient matrix vanish. The radiation-free speed

���
2
p

cs for an
isotropic solid and that of (58) for an orthotropic solid correspond to the isolated
radiation-free state in the second transonic regime for anisotropic solids of special
symmetry. In general, the existence of such states depends on both the crystal
symmetry of the solid and the defect orientation. Further case studies of various
classes of anisotropic solids in the second transonic regime are deferred to future
work on this subject.
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4. Summary

In this paper, we have achieved the following:

1. A mathematical framework is developed in which the radiation-free transonic
cracks and dislocations can be studied simultaneously for comparison. Instead
of deriving the full transonic solutions and investigating the conditions under
which the supersonic components of the solutions vanish, we probe the
existence of radiation-free solutions in the transonic regime. The equivalence of
these two approaches is guaranteed by the uniqueness theorem of elasticity.

2. We have attempted to provide a uni®ed treatment of transonic motion of
dislocations and cracks. We showed that radiation-free transonic motion of a
glide dislocation in an isotropic solid is indeed possible at

���
2
p

cs, rederiving the
Eshelby theorem, and that such a critical speed does not apply to a climb
dislocation, verifying the analysis of Weertman (1967). These results are then
linked to radiation-free motion of Mode II shear cracks at

���
2
p

cs, which
corresponds to a square-root singular crack tip stress ®eld (Freund, 1979;
Broberg, 1989).

3. Stroh's method of analyzing steady-state motion of defects has been used to
generalize the Eshelby theorem of radiation-free transonic dislocation to
orthotropic and anisotropic elastic solids. In the case of orthotropic solids, our
results agree with the analysis of asymptotic crack tip ®eld of Huang et al.
(1999) and agrees well with experimental observations of steady state transonic
shear fracture in ®ber-reinforced composites (Coker and Rosakis, 1998). We
have given a proof of existence of the radiation-free speed in the orthotropic
case.

4. For general anisotropic elastic solids, there are in general three wave speeds
c3<c2<c1 in any given crystal orientation at which a moving defect is
considered. In the ®rst transonic regime c3<v<c2, we have shown that there
always exists a radiation-free state for any given velocity of a moving defect. In
contrast to the subsonic regime where a crack of arbitrary mode mixity or a
dislocation of arbitrary Burgers vector moves without radiation, cracks or
dislocations in the ®rst transonic regime must have a speci®c mode mixity or
Burgers vector in order to move without radiation. In the second transonic
regime c2<v<c1, the radiation-free states usually do not exist unless signi®cant
symmetry conditions exist. Examples of existence include isotropic and
orthotropic solids. Such states appear to depend on both the symmetry
properties of the material and the defect orientation.
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